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IN THIS TALK,

1)
2)

3)

)

AREAS THAT EFFECT NUMERICAL ALGORITHMS

HOW THESE AREAS EFFECT NUMERICAL ALGORITHMS
SHOW EXAMPLES OF HOW COMPUTERS HAVE INFLUENCED
NUMERICAL ALGORITHMS BOTH IN THE PAST AND THE

PRESENT

DISCUSS SOME OF THE DIFFICULTIES DEVELOPING
NUMERICAL ALGORITHMS



AREAS THAT EFFECT NUMERICAL ALGORITHMS

THE NUMERICAL PROCESS IN SCIENCE
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HOW THESE AREAS INFLUENCE NUMERICAL ALGORITHM

NUMERICAL APPROXIMATIONS

A
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DIRECTION | | DEFINITION
Y

HIGH SPEED COMPUTERS



FOCUS ON ALGORITHMS FOR MATRIX CALCULATIONS

SPECIFICALLY:
1) MATRIX-VECTOR MULTIPLICATION ALGORITHM

2)  BANDED MATRIX INVERSION ALGORITHM



MATRIX ALGORITEMS ARE IMPORTANT FOR PERFORMING TRANSPORT CALCULATIONS:

~ PHYSICS — | NEUTRON

TRANSPORT
MODEL — | BOLTZMANN
EQUATION
MATH )/f///// JV
APPROX,  INTEGRAL POLYNOMIAL DIFFUSION
oM. / /

APPROX, 0 0 0 0

L
NAWAWIRL AN
AAVALALA |

COMP, ™

/o
2



IN DIFFUSION CALCULATIONS,
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RECALL:

NUMERICAL
- APPROXTMATIONS

PROBLEM
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SPECIFICALLY,
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AS AN EXAMPLE, LET US FIRST GO BACK TO THE “SCALAR ERA” TO
SEE HOW MATRIX ALGORITHMS WERE DEVELOPED

KNOWLEDGE
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EXAMPLE: MATRIX-VECTOR MULTIPLICATION
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MATRIX-VECTOR MULTIPLICATION ALGORITHMS

INNER PRODUCT FORM
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WITHOUT GOING INTO TOO MUCH DETAIL,
THESE FORMS OF MATRIX MULTIPLICATION LED TO DEVELOPMENT OF
MANY NEW ALGORITHMS,

1) CONJUGATE GRADIENT METHODS
2)  HOUSEHOLDER METHODS

3) QR AND QZ METHODS

4)  POWER AND DEFLATION METHODS

5)  VARIABLE METRIC METHODS



ELEMENTARY ROW OPERATION
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o LED TO DEVELOPMENT OF

1) VARIANTS OF GAUSS ELIMINATION ALGORITHM
2) FACTORIZATION ALGORITHMS

3) GIVENS ALGORITHM
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BANDED MATRICES
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- FOR SCALAR MACHINES, ALGORITHMS DEVELOPED USING ROW AND COLUMN
OPERATIONS WENT FASTER FOR BANDED SYSTEMS



THE CLASSICAL ALGORITHM IS GAUSSIAN ELIMINATION

~_FORVARD SUBSTITUTION
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FAST/SLOW MEMORY

MACHINES
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A COMMON EXAMPLE OF A BLOCK-STRUCTURED MATRIX
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EFFICIENT ALGORITHMS WERE THOSE THAT COULD MANIPULATE
THE BLOCKS CF THE MATRIX EFFECTIVELY

A,, B, C, ARE MATRICES

e LED TO DEVELOPMENT OF
1)  BLOCK ITERATIVE METHODS
2)  FAST POISSON/BIHARMONIC SOLVERS
3)  COMPANION MATRIX ALGORITHMS
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CONSTRAINTS OF THE STAR

1) SLOW SCALAR ARITHMETIC OPERATIONS

2)  SLOW VECTOR INSTRUCTIONS WHEN VECTORS
ARE SHORT



NEW PAWNS IN THE GAME: VECTOR ARITHMETIC INSTRUCTIONS

1) SCALAR X VECTOR
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MATRIX-VECTOR MULTIPLICATION |
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WHAT HAPPENS ON A BANDED MATRIX?
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BETTER OFF USING SCALAR ARITHMETIC
INSTRUCTIONS



WHY COULDN’T THE SUBMATRIX DATA-STRUCTURE BE' USED?

) ALGORITHMS DERIVED USING BLOCK STRUCTURES RESULTED IN
SHORT VECTORS




TAKE ANOTHER LOOK
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IN VECTOR NOTATION
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- GENERALIZATION TO MORE COMPLICATED SYSTEMS IS EASY



GENERAL COMMENTS

e  DIAGONAL ALGORITHM IS

30 - 40 TIMES FASTER ON STAR-100
5 -8 TIMES FASTER ON CRAY-1

THAN CLASSICAL ROW AND COLUMN ALGORITHM

o NO MATHEMATICAL OR GEOMETRICAL THEORY OF MATRIX-VECTOR
ALGORITHM USING DIAGONALS AS A VECTOR STRUCTURE HAS EVER
BEEN CARRIED OUT,

o  WE NEED THIS IF MORE EFFICIENT ALGORITHMS FOR VECTOR OR
MULTI-PROCESSING MACHINES ARE TO BE INVENTED,



AN EXAMPLE OF HOW RESULTS USING DIAGONAL VECTORS CAN LEAD T0
NEW ALGORITHMS
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RESULT 1: IF DIAGONALS A, AND B, ARE NON-ZERQ, THEN

DIAGONAL €., IS NON-ZERO
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RESULT 2: THE PRODUCT A, B

OF C,.,

EXAMPLE

0

N

J

C. = AO B‘O + A—l Bl + Al B-l

CONTRIBUTES TO THE FORMATION

SUITABLY OFFSET

/

I,E., EACH DIAGONAL CAN BE CONSTRUCTED FROM VECTOR

PRODUCTS AND ADDITIONS



WE USE THESE TWO RESULTS TO GENERATE AN ALGORITHM TO SOLVE
A TRIDIAGONAL SYSTEM OF EQUATIONS.

PROBLEM STATEMENT: TX = B
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STEP 1

CONSTRUCT TRIDIAGONAL MATRIX @ SO THAT: @ T =




PROCEDURE

ANALYSIS: FROM RESULTS 1 AND 2

— - —

B,A; + BiA, = (4

Eb K—l * E;l ﬁo B E;l
BUT B, = 1:

By = - Ay/A,

B_l = - A-l/AO
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WHAT HAS HAPPENED




STEP 2:

CONSTRUCT MATRIX @, SO THAT

0 G A

- CONSTRUCT @, AS BEFORE: B, = - A_o/A

0

B2 = - XZ/ATO




STEP-BY-STEP PROCESS

ETC.




OTHER VECTOR ALGORITHMS CAN BE GENERATED WITH THIS PROCEDURE

) RECURSIVE - DOUBLING

) ODD-EVEN REDUCTION

’ PARALLEL - GAUSS ELIMINATION

o CYCLIC REDUCTION®™



AFTER LOG)N = M STEPS:

QM QM_l ' . . @1 AX = ZO
| _
= Oy Qu_1-
=/
- B

FINAL SOLUTION:




CYCLIC REDUCTION vs, RECURSIVE DOUBLING

STEPS
BOTH REQUIRE LOGHN STEPS

AVERAGE VECTOR LENGTHS
RECURSIVE DOUBLING: N - 2K

CYCLIC REDUCTION: N/2K

COMPLEXITY
RECURSIVE DOUBLING: EASY TO CODE, EASY TO

UNDERSTAND

CYCLIC REDUCTION: DIFFICULT TO CODE, DIFFICULT
TO UNDERSTAND



A COMMON EXAMPLE OF A DIAGONALLY STRUCTURAL MATRIX

1J




OPTIMAL ALGORITHMS FOR VECTOR PROCESSORS

- OPTIMAL ALGORITHMS WILL USE

- COLUMN VECTOR OPERATIONS
- ROW VECTOR OPERATIONS
- DIAGONAL VECTOR OPERATIONS

IN AN EFFICIENT MANNER

- EG. WHEN VECTORS (I.E. DIAGONALS) BECOME TOO SHORT,
SWITCH TO ROW OR COLUMN VECTOR OPERATIONS TO CREATE
ALGORITHM



CRAY-1
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EFFICIENT MATRIX-MULTIPLICATION ALGORITHMS BY NON-CONTIGUOUS
DIAGONAL VECTORS (EVENLY INCREMENTED) WAS NOW POSSIBLE
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THE FOLDING ALGORITHM

STEP 1:
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STEP 3
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USE VECTOR REGISTERS AS TEMPORARY STORAGE
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KEY POINTS TO REMEMBER

e  VECTOR COMPUTER HAS GENERATED A NEW MATHEMATICAL TOOL
FOR THE NUMERICAL ANALYST

e  MORE MATHEMATICAL THEORY NEEDS TO BE DEVELOPED
o  COMPILERS CANNOT GENERATE THE OPTIMAL ALGORITHM

o  MANY NEW ALGORITHMS HAVE BEEN DEVELOPED



DIFFICULT TO CONVEY INFORMATION TO NEIGHBORING LEVELS
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RECALL:  THE SCIENTIFIC COMPUTATIONAL PROCESS

PHYSICAL PHYSICS  PROBLEM
WORLD “
Y
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MATHEMATICAL . v
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\j
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MAIN DIFFICULTY IN NUMERICAL ALGORITHM DEVELOPMENT:
COMMUNICATION PROBLEMS

RESEARCH AREAS PHYSICIST MATH, COMP. SCI.

PHYSICS PROBLEM

PHYSICS
APPROXIMATION

MATHEMATICAL
MODEL

MATHEMATICAL
APPROXIMATION

NUMERICAL
APPROXIMAT ION

NUMERICAL
ALGORITHM

HIGH SPEED
COMPUTER

COMP. SCI,
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THE BASIC GOAL OF THE EFFORT IN NUMERICAL ALGORITHMS:

MAKE THIS LINK IN COMPUTATIONAL PROCESS AS STRONG
AS POSSIBLE

NUMERICAL APPROXIMATION

NUMERICAL ALGORITHM
HIGH SPEED
COMPUTER

BY

1 RESEARCH IN NUMERICAL ALGORITHMS
2) PROBLEM DEFINITION TO HIGH SPEED COMPUTER ARCHITECTS
3) FOCUS RESEARCH IN NUMERICAL APPROXIMATIONS



OTHER ACTIVITIES

NUMERICAL
ALGORITHMS
PROBLEM
', DEFINITION
HIGH SPEED
COMPUTERS

¢  GENERATING LARGE SCALE COMPUTER CODES FOR RESEARCH
PURPOSES BY
- ACADEMIC
- INDUSTRY
- LABORATORY

o  THESE CODES WILL CONTAIN ALGORITHMS GENERATED FROM
RESEARCH



OTHER ACTIVITIES

NUMERICAL APPROXIMATIONS
DIRECTIONS

NUMERICAL
ALGORITHMS

o NEW TIME-DIFFERENCING TECHNIQUES KAVE BEEN DEVELOPED

o NEW RESULTS IN CONJUGATE GRADIENT METHOD



CONCLUDING REMARKS

e  COMPUTERS DO INFLUENCE THE TYPE OF NUMERICAL
ALGORITHMS THAT ARE USED IN YOUR CALCULATION

o  NUMERICAL ALGORITHMS ARE THE BRIDGE BETWEEN
THE PHYSICAL WORLD AND THE COMPUTING MACHINE
- DON'T TRY TO BY-PASS THEM

o  TALK TO YOUR FRIENDLY NUMERICAL ANALYST. THEY
CAN REALLY HELP YCU TO
1) BUILD A BETTER COMPUTER
2) SOLVE YOUR PROBLEM ON AN EXOTIC COMPUTER



